On the problem of mass renormalization in Fe pnictides

<u>S.-L.Drechsler</u>¹, S. Johnston², H. Rosner³, K. Koepernik¹, D. Efremov¹, V. Grinenko¹, S. Aswartham¹, S. Wurmehl¹, C. Hess¹, A. Wolter¹, B. Büchner¹

¹FW-Dresden, Germany ²University of Vancouver, Canada ³MPI-CPfS, Dresden, Germany

Outline

- 1.Introduction
- 2. Some theoretical aspects and background
- 3. Eliashberg-Migdal analysis of selected Fe pnictides
- 3.1. Na-doped Ca-122
- 3.2 K-122
- 3.3 La-FeAsOF
- 3.4 Some remarks on other pnictides
- 4. Summary & Outlok

Introduction - I

The fundamental Fermi quasi-particle characteristics: e, s=1/2, m_{*}(ω,T)

 $m_* = (1+\lambda)m_b$

- $\gamma = (1 + \lambda)\gamma_{\rm b}$
- $\gamma_{\rm b} = \frac{2}{3} \pi^2 k_{\rm B}^2 N(0)$

 m_b -bare mass \approx LDA band mass

 λ contains **all** interactions, among them the pairing interaction How to map out it ?

λ -mass enhancement factor,coupling constant (EM)

N(0) -DOS at the Fermi level

Physical quantities affected by the mass renormalization: •Fermi velocities

•Linear electronic specific heat $C_{el} = \gamma T$

$$\omega_{pl}^2 = 4/_3 \pi^2 n e^2/m^*$$

Condensate density, penetration depth (plasma frequency)
Slope of the upper critical field near T_c

Introduction-II

Enhancement vs. coupling strength relevant for superconductivity?

$$m_* = (1 + \lambda^*_{el-b} + \lambda^*_{el-el})m_b$$
$$\gamma = (1 + \lambda)\gamma_b$$

 $\gamma_{\rm b} = \frac{2}{3} \pi^2 k_{\rm B}^2 N(0)$

bare mass \approx band mass

 λ -mass enhancement factor, coupling constant (EM)

N(0) -DOS at the Fermi level

$$\omega_{pl}^2 \propto N(0)e^2 \langle v^2 \rangle_{FSS} \propto 1/m^*$$

$$\Omega^2{}_{
m pl} \propto \Sigma_{
m i=1,3(5)} N_{
m i}(0) e^2 \langle v^2 \rangle_{
m FSS(i)} \propto \Sigma_{
m i} 1/m^*{}_{
m i}$$

for multiband systems , $N_i(0)$ partial DOS

 $m_* = (1 + \lambda_{el-b})(1 + \lambda_{el-el})m_b$

No simple correlation between T_c and mass renormalization

Two steps of mass renormalization

- High-energy: Coulomb + Hund
- Low-energy: el-boson interaction (spin-fluctuations, phonons, etc.)
 Eliashberg-Migdal theory

DMFT-prediction for pnictides: *Yin, Haule & Kotliar* (2011)

 $m_*/m_b \approx 2.5 - 3$

Warning: **different** renormalization for **different** orbitals (bands)! Fe **3d**_{xy} !

Figure 1 Ordered magnetic moments and mass enhancements in iron-based compounds. a, The DFT + DMFT calculated and experimental⁶⁻¹³ iron magnetic moments in the SDW and DSDW states. Also shown is the calculated fluctuating moment in the paramagnetic (PM) state. b, The DFT + DMFT-calculated mass enhancement m^*/m_{band} of the iron 3d orbitals in the paramagnetic state and the low-energy effective mass enhancement obtained from optical spectroscopy experiments¹⁶⁻¹⁹ and (angle-resolved) photoemission spectroscopy experiments²⁰⁻²⁴.

Phenomenological description of the (lower) high-energy mass renormalization

Our quantitative approach

- Comparison of DOS (specific heat) and dHvA
- Comparison of calculated and unscreened plasma frequencies at high-temperature and low-temperature as seen in the penetration depth or the μSR – data at T -> 0

With an unscreened plasma frequency of Ω_{pl} =1.33 eV derived from reflictivity data for an optimally doped La-1111 polycrystalline sample we obtained

 $\lambda_{tot,el-b} = \lambda_{sf} + \lambda_{ph} \approx 1 \text{ to } 1.2$ i.e. no strong coupling (Drechsler2008)

Bare (LDA) plasma frequencies

material	DFT ∥ (ab)	$\epsilon_{\infty}(exp)$	∥Ω _{pl} (exp)	mass ratio
LaOFeAs	1.95. ÷2.3	10	1.29-1.33 (0.6)	2.3 - <mark>2.6</mark>
SrFe ₂ As ₂	2.8	14	1.9	2.2
La _x Sr _{1-x} Fe ₂ As ₂	2.8			
SrFe _{2-x} Co _x As ₂	2.7			
BaFe ₂ As ₂	2.63	14.9	1.58- 2.07	1.6 - 2.77
K _x Ba _{1-x} Fe ₂ As ₂	2.63		1.5; 1.6, 1.9 ±0.2	1.92 - <mark>2.7</mark>
CaFe ₂ As ₂	2.95			
KFe ₂ As ₂	2.9		2.27 - 1.94	1.63-2.23
NaFeAs	2.68			
LiFeAs	2.9			
LaOFeP	2.37-2.57	10	1.85	1.64 – 1.95
α - Fe	6.85		3.72 - 4.9	1.95 - 3.4

Our estimate for the high-energy mass renormalization

3 hole- FSS

Ca_{0.32}Na_{0.68}Fe₂As₂ – specific heat fit

3-band model for the electronic specific heat

Fitting: parameters:

3 partial DOS

3 coupling constants:

1 intraband (el-ph)

2 interband (el-sf)

$$\lambda_{11} = \lambda_{22} = \lambda_{33} = 0.45$$

$$\lambda_{13} = -1, \ \lambda_{12} = -0.1, \ \lambda_{23} = 0$$

$$\lambda_{tot} = 0.9$$

$$T_c(\lambda_{ph} = 0) = 19 \text{ K}$$

$$T_c(\lambda_{sf} = 0) = 5 \text{ K}$$

$$T_c(\lambda_{ph} + \lambda_{sf}) = 34 \text{ K}$$

High *T*_c without strong coupling !

3 gaps predicted:

 Δ_1 =7.2 meV, Δ_2 =2.3 meV, Δ_3 =7.1 meV in accord with recent ARPES data (Evtushinsky 2013)

$Ca_{0.32}Na_{0.68}Fe_2As_2$ -III

Remaining problems: significant deviations in the PDOS for band 44 (2) between our fit and the LDA (FPLO) calculations by a factor of 2

one LDA-band starts to fail precursor of the K122 problems ?

KFe₂As₂ (K-122)

SH & LDA: large mass enhancement (me) ≈ 9 !! Where does it come from ? dHvA (Terashima2013): highly nonuniform me 2.2 – 24 !!

FIG. 3. (Color online) Comparison of FSs obtained by ARPES and those predicted by band-structure calculation. (a),(b) FSs determined by ARPES. k_F positions in Fig. 2 have been symmetrized in the first BZ. (c),(d) FSs given by the band-structure calculation. A small FS around the Z point comes from a three-dimensional d_{-2} band shown in Fig.

A2

F	S k_z		area			$m^{*}/m_{e} \ (m^{*}/m_{b})$	
		ARPES	dHvA	LDA	ARPES	dHvA	LDA
a	κГ	9.1	8.2	20.8	5.1(2.0)	6.0(2.3)	2.6
	Z	9.8	8.6	21.6	6.6(2.3)	6.5(2.2)	2.9
ζ	Г	12.2	10.3	12.2	11.0(7.9)	8.5(6.1)	1.4
	Z	17.0	15.7	13.8	9.6(4.0)	18 (7.5)	2.4
β	βГ	27.3		16.7	16.3(6.3)		2.6
	Z	30.0		17.4	17.9(6.9)		2.6
ϵ	Г	2.1	0.86	0.11	5.6 (18.7)	6.0 (20)	0.3
	Z		1.29	0.36		7.2 (24)	0.3

LDA-problems in describing K-122

- 1. wrong sequence of bands near Γ
- 2. wrong FSS cross sections
- 3. Large shifts band shifts required (e.g. +0.6 eV for the $3d_{xy}$ orbitals and down shifts for the remaining orbitals to keep charge neutrality

TABLE I. Cross-sectional areas and effective masses of FSs of KFe₂As₂ determined by ARPES and dHvA experiment. The areas are expressed as a percentage of the area of the 2D BZ. m_e and m_b are the free-electron and band masses, respectively.

\mathbf{FS}	k_z		area			$m^*/m_e (m^*/m_b)$	
		ARPES	dHvA	LDA	ARPES	dHvA	LDA
α	Г	9.1	8.2	20.8	5.1(2.0)	6.0(2.3)	2.6
	Z	9.8	8.6	21.6	6.6(2.3)	6.5(2.2)	2.9
ζ	Г	12.2	10.3	12.2	11.0(7.9)	8.5(6.1)	1.4
	Z	17.0	15.7	13.8	9.6 (4.0)	18(7.5)	2.4
β	Г	27.3		16.7	16.3(6.3)		2.6
	Z	30.0		17.4	17.9(6.9)		2.6
ϵ	Г	2.1	0.86	0.11	5.6 (18.7)	6.0 (20)	0.3
	Z		1.29	0.36		7.2 (24)	0.3

FIG. 1. Band dispersions of KFe₂As₂ in the zone diagonal direction. (a),(b) ARPES spectra taken at $h\nu = 25$ eV and 30eV, respectively, corresponding to $k_z=6.5$ and 7.0 $(2\pi/c)$. SS denotes surface states. (c) Band dispersions predicted by band-structure calculation.

Selected Mottness and its consequences for the orbital dependent high-energy mass enhancement

Approaching the Mott-transition at $n_{el} = 5$ (Fe⁺³), the mass start to **diverge**

Rather different high-energy (?) band renormalizations

Terashima2013

FSS	γ _i [mJ/mol K²]	me (dHvA)	me (ARPES)	
propeller <i>E</i>	4 x 9.6 = 38.4	20 - 24	18.7 20.3	
inner cylinder α^{-}	9.1	2.3 5	² 4.05	
square d _{x2-y2}	27.6	7.9 5	6.1 4.05	
rounded big square β d _{xy}	19.2	6.3 -6.9	6.6	
Total	94			

η_{CH} = 2.54 like for other weakly correlated pnictides

η_{CH} = 3.35 like for more correlated pnictides

From Eliashberg-analysis $\lambda_{tot,b}$ = 0.97, λ_{sf} =0.6, λ_{ph} = 0.17

Possible phase diagram

Remarks on other pnictides

LiFeAs :
$$s_{\pm}$$
 - wave, T_c =18 K, $\lambda_{tot, b} \approx 0.6$, $\lambda_{el-ph} \approx 0.2$

no strong coupling ! From fitting the el-specific heat & quasi- particle interference

Optimally doped (Ba,K)Fe₂As₂: from LDA + spec. heat data (Popovic, 2011) we have:

$$(1+\lambda_{el-b})\eta_{CH} \approx 5 \rightarrow \lambda_{el-b} \leq 1 \div 1.5$$
, if $\eta_{CH} \approx 2 \div 2.5$

No room left for high-energy renormalizations !

Electron (Co) doped Ba-122:

(1+λ_{el-b})η_{CH}≈ 2 ÷3

one way out: a pseudo-gap ???

In some of these systems pseudo-gap like features have been observed!

Summary & Outlook

- 1. Three Fe-pnictide SC (1111, 122, 111) can be well described by the multiband s_{\pm} -Eliashberg-theory at intermediate coupling strength
- 2. High-energy mass renormalization is always important!

Strong constraint for the strong el-boson coupling

- 3. Approaching the overdoped hole region, different high-energy renormalizations for different bands special role of Fe 3 d_{xy} orbitals
- 4. K122 multiband *d*-wave model proposed
- 1. What about the Rb-122 and Cs-122? Mott transition for a single band ?
- 2. More studies of disorder effects includung magnetic impurities are necessary
- 3. What about the real high- T_c (45- 56 K) superconductors, selenides and tellurides?

Selected Mottness

