Critical currents and vortex-glass behavior in Ba(Fe,Ni)₂As₂ single crystals.

> ^{1,3}K. Pervakov, ¹V. Vlasenko, ¹S. Gavrilkin, ^{2,3}E. Khlybov, ¹V. Pudalov and ¹<u>Yu. Eltsev</u>

¹P. N. Lebedev Physical Institute, Russian Academy of Sciences, ²Institute for High Pressure Physics, Russian Academy of Sciences, ³International Laboratory of High Magnetic Fields and Low Temperatures.

Different families of Fe-based superconductors

Temperature dependence of ac-susceptibility Ni-doped 122 single crystals

Bulk magnetization vs magnetic field Ni-doped 122 crystals

Bulk magnetization vs magnetic field Ni-doped 122 crystals

Magnetic phase diagram of Ni-doped 122 single crystals from M(H) measurements

 $H_{c2}/dT \approx 4.2$ T/K for BaFe_{1.9}Ni_{0.1}As₂ $H_{c2}/dT \approx 3.6$ T/K for BaFe_{1.86}Ni_{0.14}As₂

Critical current of Ni-doped 122 single crystals

Scaling of normalized pinning force vs reduced field in Nidoped 122 single crystals

$$f_p = \frac{F_p}{F_p^{max}} = I_c(H) \times H/(J_c(H) \times H)_{max}$$

$$h = H/H_{irr}$$

 $f_p \propto h^p (1-h)^q$

h_{max}=0.2 suggests grain-boundary pinning

 h_{max} =0.33 corresponds to NPP pinning

h_{max}=0.7 is due to pinning caused by the order parameter spatial variations

Data for single crystals of 122 family of different compositions with around optimal doping level

composition	T _c , K	dH _{c2} /dT, T/K	J _c , A/cm ²	h _{max} =H _{max} /H _{irr}	reference
BaFe _{1.9} Ni _{0.1} As ₂	19.5	-4.2	3x10 ⁶ (at 4.2K)	0.4	Supercond. Sci. Technol, 26 , 015008 (2013).
$BaFe_{2}As_{1.36}P_{0.64}$	28	-	4x10 ⁵ (at 15.4K)	0.7	Phys.Rev. B 84, 140504(R) (2011).
$BaFe_{1.84}Co_{0.16}As_{2}$	24.1	-8	9x10 ⁵ (at 4 K)	-	Phys. Rev. B 81, 014503 (2010)
Na _{0.75} Ca _{0.25} Fe ₂ As ₂	33.4	-	1.1x10 ⁶ (at 5 K)	-	Phys. Rev. B 84, 094522 (2011).
$BaFe_{1.86}Co_{0.14}As_{2}$	22	-	2.6x10 ⁵ (at 5 K)	-	Phys. Rev. B 78, 224506 (2008)
BaFe _{1.8} Co _{0.2} As ₂	24	-1.7	6x10 ⁵ (at 5 K)	-	J. Phys. Soc. Jpn. 78, 023702 (2009)
BaFe _{1.8} Co _{0.2} As ₂	22	-2.5	4x10 ⁵ (at 4.2 K)	0.45	Appl. Phys. Lett. 94, 062511 (2009).
BaFe _{1.9} Ni _{0.1} As ₂	17.6	-4.2	4x10 ⁵ (at 2 K)	-	J. Appl. Phys. 109, 07E151 (2011)
Ba _{0.72} K _{0.28} Fe ₂ As ₂	32	-4.4	3x10 ⁵ (at 7 K)	-	Phys. Rev. B 82, 024525 (2010)
Ba _{0.65} Na _{0.35} Fe ₂ As ₂	29.4	-	1x10 ⁶ (at 5 K)	0.28	arXiv:1205.2210v1 (2012)
Ba _{0.68} K _{0.32} Fe ₂ As ₂	38.5	-3.4	1.1x10 ⁶ (at 10 K)	0.43	Phys. Rev. B 80, 144515 (2009)
$BaFe_{1.85}Co_{0.15}As_2$	24.5	-2.0	4.2x10 ⁵ (at 10 K)	0.37	Phys. Rev. B 80, 144515 (2009)
BaFe _{1.91} Ni _{0.09} As ₂	18.5	-2.2	2.3x10 ⁵ (at 10 K)	0.32	Phys. Rev. B 80, 144515 (2009)

Bulk magnetization vs magnetic field of K-doped 122 crystals

Comparative study of magnetic phase diagram of hole- and electron doped 122 single crystals with close T_c values

Comparative study of critical currents of hole- and electron doped 122 single crystals with close T_c values

 μ_0 H,T

Resistive transition of BaFe1.9Nio.1As single crystals in magnetic field

Resistive transition of BaFe1.9Nio.1As single crystals in Vogel-Fulcher coordinates

Resistive transition of BaFe1.86Nio.14As single crystals in Vogel-Fulcher coordinates

T,K

I-V curves of BaFe1.9Nio.1As single crystals near vortex-glass melting temperature

Magnetic phase diagram of Ni-doped 122 single crystals from R(T) measurements

Conclusions

- 1. For Ni-doped samples we observed critical current density exceeding 10⁶ A/cm² at low temperature suggesting strong intrinsic pinning in these samples.
- 2. For Ni-doped samples and for H//*c*-axis field orientation, the curves of normalized pinning force $f_p = F_p/F_p^{max}$ vs $h = H/H_{irr}$, measured at different temperatures fall in a single curve with peak position $h_{max} \approx 0.33$ for BaFe_{1.86}Ni_{0.14}As₂ crystal and $h_{max} \approx 0.4$ for BaFe_{1.9}Ni_{0.1}As₂ sample indicating single dominating normal point pinning mechanism.
- 3. In the H//*ab*-planes geometry where shielding current consists of two components parallel and perpendicular to the c-axis $f_p(h)$ curves show no scaling.
- 4. Critical current density of $BaFe_{1.9}Ni_{0.1}As_2$ crystal exceeds J_c for $Ba_{0.64}K_{0.36}Fe_2As_2$ at fields below ~1T. With increasing field difference between J_c values for $BaFe_{1.9}Ni_{0.1}As_2$ and $Ba_{0.64}K_{0.36}Fe_2As_2$ crystals rapidly decreases, thus, demonstrating higher critical currents in $Ba_{0.64}K_{0.36}Fe_2As_2$ samples in strong magnetic fields above ~10-15T.
- 5. Temperature dependence of the resistance as well as IV-characteristics may be described within vortex-glass model.

Thank you for your attention!