Transport characteristics of phase-separated Fe-based superconductor heterostructures

Mikhail Belogolovskii

Donetsk Institute for Physics and Engineering, Donetsk 83114, Ukraine

1. Introduction.

2. Striking difference between gap values extracted from contact and Josephson data.

3. A "minimal" model able to explain the striking discrepancy between different gap values.

4. Conclusions.

Introduction

Introduction

Table 1 Properties of different classes of superconductor					
Property	Conventional superconductors	Copper oxides	MgB ₂	Iron-based superconductors	
T _c (maximum)	<30 K	134 K	39 K	56 K	
Correlation effects	None (nearly-free electrons)	Strong local electronic interaction	None (nearly-free electrons)	Long-range (non-local) magnetic correlations	
Relationship to magnetism	No magnetism	Parent compounds are magnetic insulators	No magnetism	Parent compounds are magnetic metals	
Order parameter	One band, same-sign s wave	One band, sign-changing d wave	Two band, same-sign s wave	Two band, presumably sign- changing s wave	
Pairing interaction	Electron-phonon	Probably magnetic (no consensus)	Electron-phonon	Presumably magnetic	
Dimensionality	Three dimensional	Two dimensional	Three dimensional	Variable	

Typical ingredients found in systems with competing interactions are inhomogeneity, anisotropy, disorder and glassiness. Compelling evidence for the presence of nanoscale phase separation between superconductivity and antiferromagnetism in some iron-based superconductors has been observed.

Introduction

Typical electronic phase diagram for the 122 family of pnictide materials as a function of extra-electrons per Fe atom, both in the case of hole- and electron-doping.

Our results for SmFeAsO_{1-x} F_x (x = 0.15 and x = 0.2) indicate that: the 4f electrons of Sm³⁺ ions are coupled to a sea of weakly itinerant and antiferromagnetically interacting fermions.

from P. Carretta et al., arXiv: 1307.8283

Striking discrepancy between gap values extracted from point-contact and Josephson data: an experimental observation

from S. Schmidt et al., Physics Procedia (2012)

Large variation of reported values of energy gaps in Co-doped BaFe₂As₂ epitaxial superconducting thin films

from T. Plecenik et al., Applied Physics Letters (2013)

PbIn	Au	BaFe _{1.8} Co _{0.2} As ₂ $T_{c} = 18.6 \text{ K}$
------	----	---

 $I_{\rm c}R_{\rm N}$ \Box 4.2 μ V

$$I_{\rm c}R_{\rm N} \Box \frac{\pi}{e} \frac{\Delta_{\rm L}\Delta_{\rm R}}{\Delta_{\rm L} + \Delta_{\rm R}}$$

from S. Schmidt et al., Physics Procedia (2012)

Three kinds of junctions showed similar characteristics with $I_c R_N$ products:

20.2 μV	-	grain-boundary devices
18.4 μV	-	planar S'NS structures
12.3 μV	-	edge-type junctions

from S. Döring et al., IEEE Trans. Appl. Supercond. (2013)

$I_c R_N$ of nearly 90 µV for Ba-122-TiO_x-Pb

from S. Döring et al., arXiv: 1309.2331

A "minimal" model able to explain the striking discrepancy between gap values extracted from point-contact and Josephson data

Is the discrepancy an effect of the phase separation into antiferromagnetic and superconducting regions?

Nanoscale phase separation and chemical inhomogeneity were directly observed in BaFe₂(As_{1-x}P_x)₂ superconductors [*Hefei Hu, PhD Thesis (2012)*]

Sketchy representation of the model of phase-separated antiferromagnetic and superconductiing orderings

Two possible scenarios of the metallic antiferromagnet

- the local moment magnetic metal
- spin density wave metal

from P. Carretta et al., arXiv: 1307.8283

Phase separation between antiferromagnetic and superconducting regions

Stoner theory of itinerant electron magnetism

$$\mathbf{H}_{\mathrm{AF}} = \sum_{\mathbf{p},\sigma} \left\{ \left(\gamma_{\mathbf{p}} + \frac{1}{2}\sigma h_{s} \right) \mathbf{a}_{\mathbf{p}\sigma}^{+} \mathbf{a}_{\mathbf{p}\sigma} + \left(\gamma_{\mathbf{p}} - \frac{1}{2}\sigma h_{s} \right) \mathbf{b}_{\mathbf{p}\sigma}^{+} \mathbf{b}_{\mathbf{p}\sigma} + t_{\mathbf{p}} \left(\mathbf{a}_{\mathbf{p}\sigma}^{+} \mathbf{b}_{\mathbf{p}\sigma} + \mathbf{b}_{\mathbf{p}\sigma}^{+} \mathbf{a}_{\mathbf{p}\sigma} \right) \right\}$$

T. Moriya, *Spin Fluctuations in Itinerant Electron Magnetism* (Springer-Verlag, Berlin, 1985).

Phase separation between antiferromagnetic and superconducting regions

Generalization of the McMillan proximity-effect tunneling model (1968)

 $N_{\rm AF}(\varepsilon) = \sum_{\sigma} N_{\rm AF}^{\sigma}(\varepsilon)$

Phase separation between antiferromagnetic and superconducting regions

$$I_{\rm c}R_{\rm N} = \frac{\pi\Delta_0}{2e} \frac{\tanh(\Delta_0/2k_{\rm B}T)}{\left[1 - \left(\mathrm{dRe}\Delta(\omega)d\omega\right)_{\omega=\Delta_0}\right]} - \frac{1}{e} \int_{\Delta_0}^{\infty} d\Omega \tanh\left(\frac{\Omega}{2k_{\rm B}T}\right) \mathrm{Im}\left\{\frac{\Delta^2(\Omega)}{\Omega^2 - \Delta^2(\Omega)}\right\}$$

Δ_0 is the minimal value of Ω for which $\Omega = \operatorname{Re} \Delta(\Omega)$ and $\operatorname{Im} \Delta(\Omega) = 0$

from T.A. Fulton and D.E. McCumber, Phys. Rev. (1968)

$$\frac{dI(V)}{dV}R_{\rm N} = 1 + \left|\frac{\Delta(eV)}{eV + \sqrt{\left(eV\right)^2 - \Delta^2(eV)}}\right|^2$$

from A.N. Omelyanchuk et al., Fiz. Nizk. Temp. (1988)

 $V_{\rm S} = 0.4$; $V_{\rm N} = 0$

 $V_{\rm S} = 0.4$; $V_{\rm N} = 0$; $\Gamma_{\rm S}/\Gamma_{\rm N} = 0.2$

 $V_{\rm S} = 0.4$; $V_{\rm N} = 0$; $\Gamma_{\rm S}/\Gamma_{\rm N} = 0.2$

An effect of the spin-splitting field

 $V_{\rm S} = 0.4$; $V_{AF} = 0$; $\Gamma_{\rm S}/\Gamma_{\rm AF} = 0.2$; $h = 0.075 \Delta_{\rm S}$

Point-contact spectra

 $V_{\rm S} = 0.4$; $V_{AF} = 0$; $\Gamma_{\rm S}/\Gamma_{\rm AF} = 0.2$; $h = 0.075 \Delta_{\rm S}$

Simulation results:

- the $I_c R_N$ product for Josephson junctions with an AFM-SC bilayer is reduced by an order of magnitude comparing with that for an SC film;

 at the same time the "gap" feature in the normalized conductance is shifted towards lower voltages by
~ 30 percent.

THE END