

Sebastian Döring Friedrich-Schiller-University Jena

Thin film Josephson junctions for the characterization of iron-based superconductors

Trilateral workshop on Hot Topics in HTSC 29.Sep.-02.Okt.2013

Outline

Tasks
Junction preparation
Results of planar junctions

Au barrier
TiO_x barrier

Results of edge-type junctions
Junctions on single crystals
Summary
Outlook

Motivation/Tasks

- Deposition of the high-quality thin films of Ba(Fe_{1-x}Co_x)₂As₂ at IFW Dresden substrates: STO, LSAT, MgO, CaF₂
- Co-doped Ba-122 single crystals at KIT Karlsruhe
- Preparation of junctions
- Investigation of superconducting properties
 - Critical current density
 - Order parameter
- Tuning of junction properties
 - IcRn product
 - Barrier transparency

Junction types

*

Thin film Josephson junctions S. Döring (FSU Jena)

	planar SXS'-junction	edge-type junction	
Ba Fe As c a b	PbIn I Au Ba-122	SiO ₂ PbIn Au Ba-122	
current direction	c-axis	ab-plane	
barrier	Au layer (510nm) Au+TiO _x (13nm)	Interface engineered (ion beam, chemicals, air)	

Rotter et al. Phys. Rev. Lett. 101 (2008) 107006

Process steps

	planar SNS-junction	edge-type junction	
Process(es):	IBH) Giol 2 Ispgt ####################################		
	Lift-off Lif	t-off Lift-off	
Affected part:	Insulation laye Composition	tekendedeensulation layer	
(a) 11,3 nm (1,2 μm 1 0,0 nm 1	b) 2 μm ¹ 5,9 nm Dö (20) (20) (20) (20) (20) (20) (20) (20)	oring et al. <i>Physica</i> C 478 012) 15-18	

Titanium oxide barriers

Thin film Josephson junctions S. Döring (FSU Jena)

Preparation of planar junctions

Döring et al. arXiv.org 1309.2331 Submitted to Appl. Phys. Lett.

Patterning junction area by SiO2 framework
Etrapiog (Gs) Rbrendd te golchlayter thick tresse
Sputtering Ti (1..3nm)
Heating and oxidation in atmosphere
Evaporating Pb and In as counter electrode

Overview

Junctions with Au barrier

Thin film Josephson junctions S. Döring (FSU Jena)

planar SNS-junction (5nm Au)

I-V-characteristic: Asymmetric shape I_c≈350μA R_n=53mΩ I_{ex}≈200μA I_cR_n=18μV, corr: I_cR_n=7.9μV

I_c − T dependence: nearly linear

Schmidt et al. *Appl. Phys. Lett.* **97** (2010) 172504

Junctions with Au barrier

Thin film Josephson junctions S. Döring (FSU Jena)

planar SNS-junction (5nm Au)

Shapiro steps n=2eV/hf

Microwave dependence (12GHz):
Bessel behavior
Exponential underground
Offset ≈30µA

Schmidt et al. *Appl. Phys. Lett.* **97** (2010) 172504

Junctions with TiO_x barrier

Planar junction (1.5nm TiO_x)

Thin film Josephson junctions S. Döring (FSU Jena)

- Symmetric I-V-characteristic
- RSJ + Flux Flow

=>increase by factor 5

Döring et al. arXiv.org 1309.2331

Junctions with TiO_x barrier

Planar junction (2.0nm TiO_x)

Junctions with TiO_x barrier

Thin film Josephson junctions S. Döring (FSU Jena)

Planar junction (2.0nm TiO_x) $\beta_C \ddot{\phi} + \dot{\phi} + \sin \phi = i_b + i_m \sin \Omega \tau$

Microwave dependence:

- Fitable within simple
 Josephson equation
- No background needed
- Good periodicity

Results on edge-type junctions

Thin film Josephson junctions S. Döring (FSU Jena)

Edge-type junction

Döring et al. Supercond. Sci. Technol. 25 (2012), 084020

I-V-characteristic: Asymmetric shape					
Parameter	positive	negative			
I _c	59μΑ	42μΑ			
R _n	217mΩ	197mΩ			
I _{ex}	24µA	22μΑ			
I _c R _n	12.7μV	8.2µV			
I _c R _n (corr.)	7.7μV	3.9µV			

I_c − T dependence ■Asymmetric but uncertain near T_c

Results on ede-type junctions

Thin film Josephson junctions S. Döring (FSU Jena)

Edge-type junction

Shapiro steps

Microwave dependence (6GHz): Uncertain No offset

Magnetic field dependence:
Countercyclical behavior
Offset: 30µA
No suppression of I_c

Döring et al. Supercond. Sci. Technol. 25 (2012), 084020

Single crystals

- Junction designs are transferable to single crystals
- Additional competitions:
 - Embedding (Epoxy clue)
 - Polishing (RMS<2nm)
 - Insulation (SiO2 d=400nm)

Single crystals

Thin film Josephson junctions S. Döring (FSU Jena)

Planar junction with 2.5nm TiOx barrier:

Ic=1.2mA Rn=1Ω IcRn=1.2mV

Hysteretical I-V characterisitic: Insulating barrier βc>1

Summary

- Preparation of planar and edge-type junctions from Ba-122 thin films
- Josephson effect observed for both types
- Problems with Au barriers and edge-types
- TiOx barriers:
 - Increase of I_cR_n
 - Avoid of disturbing effects
- Successful transfer to single crystals

Outlook

- Real tunneling (SIS) junctions
- Controlling and tuning the properties of edgetype junctions
- Explanation of low IcRn products
- Combination of junctions for phase-sensitive test

Thin film Josephson junctions S. Döring (FSU Jena)

Спасибо за ваше внимание! Дякуємо за вашу увагу! Vielen Dank für ihre Aufmerksamkeit!

Thanks to:

KIT Karlsruhe	IFW Dresden:	FSU Jena:
Dr. Thomas Wolf	Fritz Kurth	Stefan Schmidt
	Jan Engelmann	Manuel Monecke
	Dr. Kazumasa lida	David Reifert
	Dr. Silvia Haindl	Noor Ali Hasan
	Dr. Ingolf Mönch	Dr. Volker Tympel
	Prof. Dr. Bernhard Holzapfel	Prof. Dr. Frank Schmidl
		Prof. Dr. Paul Seidel