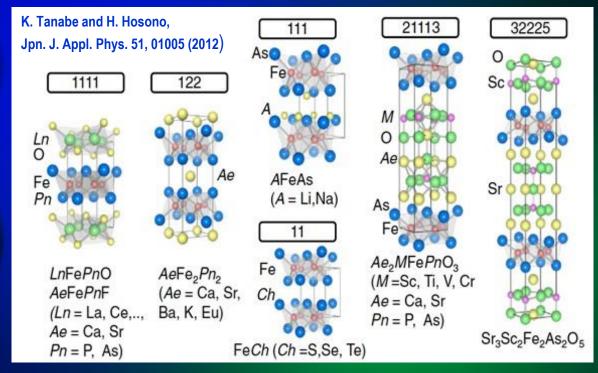


P.N. Lebedev Physical Institute,

Russian Academy of Sciences

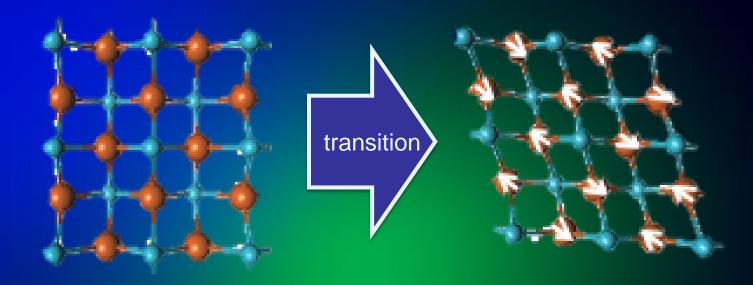

Chemistry of superconducting pnictides

Kirill Pervakov

Outline

- Crystal symmetry
- 122 system
- Superconductor as a solid solution
- Self-flux method
- Contamination of single crystals
- Summary

Crystal symmetry

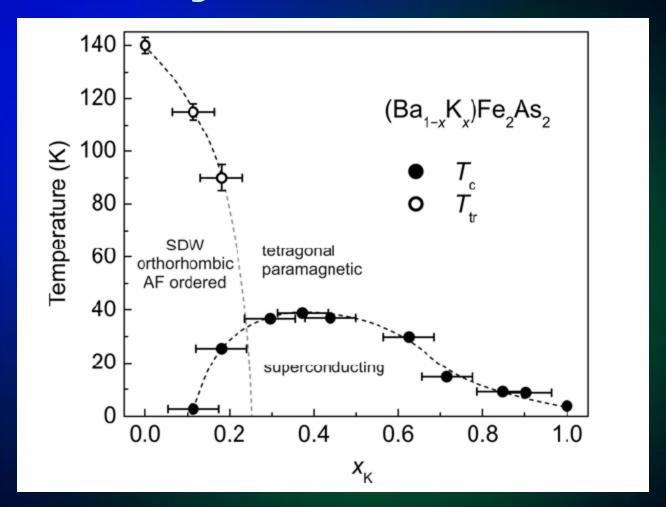


Poor metals, Low $E_F = 20-100$ meV, Short $\xi=1-2$ nm, Huge $H_{c2} > 100$ T

Superconductivity from magnetic Fe²⁺ ions

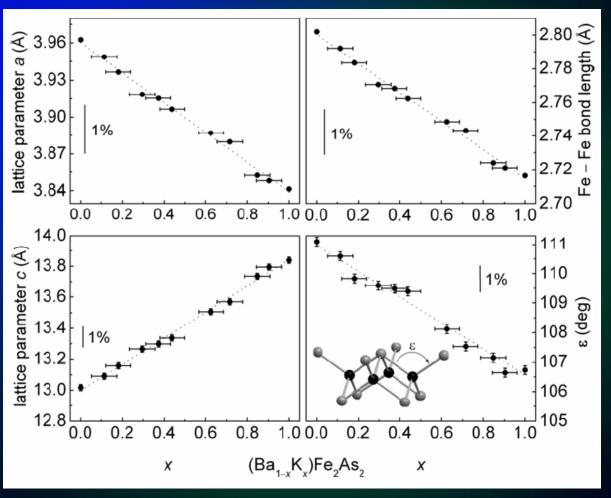
ReOFeAs based (1111) ($T_c = 55K$) (Re = Sm, Nd) Ba_{1-x}K_xFe₂As₂ based (122) ($T_c = 38 K$) FeSe_xTe_{1-x} based (11) ($T_c = 18 K$)

Ba-122 system



I4/mmm
Tetragonal
Paramagnetic

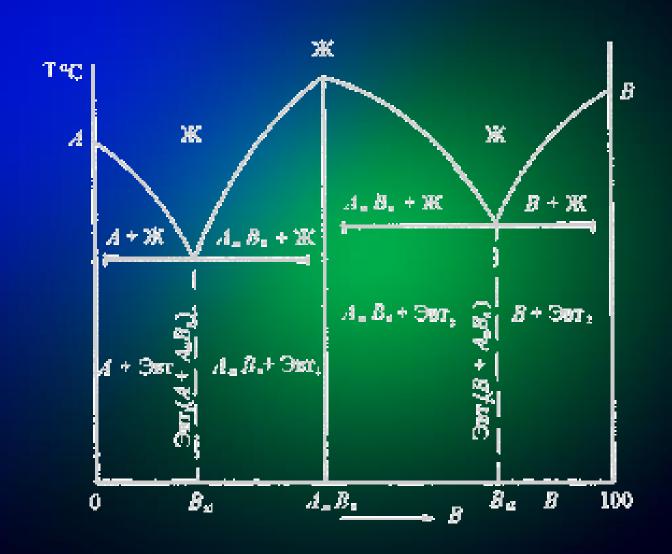
Fmmm
Orthorombic
Antiferromagnetic


Doping supresses this transition

Ba-122 system

Magnetic phase diagram of Ba_{1-x}K_xFe₂As₂ D. Johrendt and R. Poettgen, Physica C 469, 332-339 (2009)

Superconducting phase as a solid solution



M. Rotter, M. Pangerl et al. Angew. Chem. Int. Ed. 47 7949-52 (2008).

Superconducting phase as a solid solution

One should take into account that according to the phase diagram with congruently melting compound, after reaction between initial substances first crystallizes main phase with higher temperature of crystallization and then if it's a small difference between crystallization temperature of the main phase and the initial reagent, it forms the solid solution.

Superconducting phase as solid solution

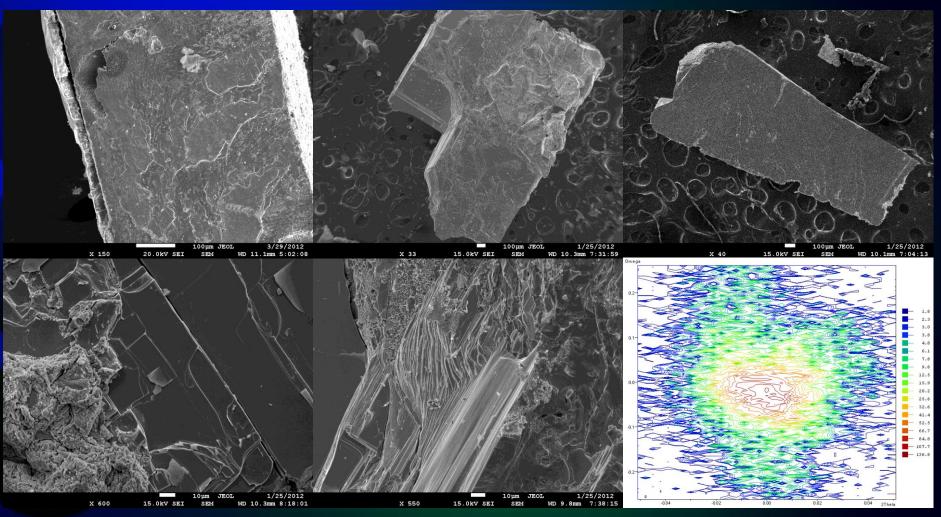
Self-flux method

Our system is Ba(Fe,Ni)₂As₂

Various routes of synthesis: 1) From elements (pressure required): Ba + 2(Fe, Ni) + 2As -> Ba(Fe,Ni)₂As₂ 2) From precursors: Ba + 2(FeAs, NiAs) -> Ba(Fe,Ni)₂As₂ BaAs + $(Fe,Ni)_2As \rightarrow Ba(Fe,Ni)_2As_2$ 3) From pure phases: $BaFe_2As_2 + BaNi_2As_2 -> Ba(Fe,Ni)_2As_2$

Self-flux method

Our system is Ba(Fe,Ni)₂As₂


Various routes of synthesis: 1) From elements (pressure required): Ba + 2(Fe, Ni) + 2As -> Ba(Fe, Ni)₂As₂ 2) From precursors: Ba + 2(FeAs, NiAs) -> Ba(Fe,Ni)₂As₂ BaAs + $(Fe,Ni)_2As \rightarrow Ba(Fe,Ni)_2As_2$ 3) From pure phases: $BaFe_2As_2 + BaNi_2As_2 -> Ba(Fe,Ni)_2As_2$

Contamination of single crystals

Possible contaminants:

- 1. Initial substances
- 2. Crucible material
- 3. Other outer contaminants

Self-flux method

SEM images of $BaFe_2As_2$ single crystals with different dopants grown by self-flux method. Top panels (from left to right): $BaFe_{1.94}Co_{0.06}As_2$, $BaFe_{1.9}Ni_{0.1}As_2$, $BaFe_{1.86}Ni_{0.14}As_2$. Bottom panels (from left to right): $BaFe_{1.88}Ni_{0.12}As_2$, $BaFe_{1.9}Ni_{0.1}As_2$ and 2D view of the (006) reflex for $BaFe_{1.9}Ni_{0.1}As_2$.

Summary

- √122 compound is a solid solution
- ✓ There is no notable contamination of single crystals by reagents or flux
- Contamination of the single crystals may be induced by wrong speed of crystallization

Inank you for your attention!