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Main idea of the LDA approximation

Hohenberg-Kohn theorem
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— Main disadvantage — LDA has simplified

time-averaged
electron density

electron-electron interaction.

— Main advantage — LDA allows to describe kinetic
lattice potential

part of the Hubbard Hamiltonian and to calculate interaction

parameters.



Main idea of DMFT
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H__Is internal parameter of LDA+DMFT

I.DA contains two contributions to local electron-electron interaction:
1. Hartree term;
2. Local exchange-correlation energy of the uniform electron gas
DMEFT contains full Hubbard (local) interaction.
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The LDA+DMFT double counting problem

The LDA+DMEFT double counting problem arises since there is no
direct microscopic or diagrammatic relation between LDA and the

Hubbard model.

» No unique definition of the H4. term.

® Several ad hoc definitions of double counting term were proposed.
* Some of them works only for particular compounds.

* Additional free parameter in LDA+DMFT in a sense of choosing either
Hg. term form or simply a number or even it is not mentioned at all.



Different types of double counting treatment
If we take Hubbard interaction in the form:
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Within LDA+U method there was postulated “around mean-field
approach” which assumes that LDA is some kind of Hubbard model
mean-field solution
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V.I. Anisimov, J. Zaanen and O.K. Andersen,Phys. Rev.

B 44, 943 (1991); V. I. Anisimov, F. Aryasetiawan, and A.
I. Lichtenstein, J. Phys. Cond. Matter 9, 767 (1997).



Different types of double counting treatment
If we take Hubbard interaction in the form:

HHub = U Z Z nur.tTnarr.tl
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One can do the Hartree decoupling for this Hamiltonian then we get
so called fully localized limit expression
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M.T.Czyzyk and G.A.Sawatzky, Phys. Rev. B, 49, 14211
(1994).



Different types of double counting treatment

Alternative way to derive or guess the HPC term is to
express it through the characteristics of intrinsic single
DMFT impurity problem, such as impurity self-energy
¥ "P, or impurity Green’s function G, F,. A popular

way is to define double counting energy as a static part
of the impurity self-energy [21]:

Fic = 5Tro (S57(0)) )

Some of LDA+DMFT papers used this definition in cal-
culations of metallic magnetic and non-magnetic systems.

21 A1 Lichtenstein, M.I. Katsnelson, G. Kotliar, Phys. Rev.
Lett. 87, 067205 (2001); M.I. Katsnelson, A.I. Lichten-
stein, Eur. Phys. J. B 30, 9 (2002).



Different types of double counting treatment

Hartree energy can be determined from LDA+DMEFET
self-energy as its real part in the high frequency limit
value. In Ref. [25] it was proposed to use thus defined
Hartree energy as a double counting correction, using the
constraint

ReTr (S, (jwn)) = 0, (10)
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where wpy is the highest Matsubara frequency (used in
calculations). Physically similar definition of double
counting term F4. = X(w — 00) was successfully applied
to metallic ferromagnetic SrCoQOz|23].

25 M. Karolak, G. Ulm, T. Wehling, V. Mazurenko, A.
Poteryaev, A. Lichtenstein, Journal of Electron Spec-
troscopy and Related Phenomena, Volume 181, 11 (2010).

23 J. Kunes, V. Krapek, A.V. Kozhevnikov, arXiv:1202.0110.



Different types of double counting treatment

For metallic systems it was suggested to fix the double
counting correction by equating the number of particles
of non-interacting problem and impurity problem as ex-
pressed via corresponding Green’s function [24]:

Tr Gk (9) = Tr Ghles(9), (11)
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0,loc
where G’ 7% is local non interacting Green function.

Some of LDA+DMFT works treated double counting en-
ergy Fg4. as a free parameter. The authors of Ref. [25]

found that most of described HPC terms proposed in the
literature are not completely satisfactory in the case of
charge transfer insulator NiO and proposed a numerical
way to define the necessary double counting correction.

25 M. Karolak, G. Ulm, T. Wehling, V. Mazurenko, A.
Poteryaev, A. Lichtenstein, Journal of Electron Spec-
troscopy and Related Phenomena, Volume 181, 11 (2010).



Main Idea of LDA' approach

The LDA Hamiltonian is expressed via local charge densitv:
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It seems somehow inconsistent to use LDA to describe correlation effects in
narrow (strongly cor- related) bands from the very beginning, as these should
be treated via more elaborate schemes like DMFT. To overcome this difficulty
for these states, we propose to redefine charge density as follows:
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Consistent LDA'+DMFT calculations

In our work we used:

1) LMTO(ASA) to get LDA band structure, with Von Barth-Hedin
exchange-correlation potential

2) LDA Hamiltonian contains all valence states (no “projections™)

3) HF-QMC to solve five orbital DMFT equations
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Fig. 2. Top panel — LDA calculated band dispersions in
the vicinity of the Fermi level for Bal22; Bottom panel

K. FesSes (black lines) and Cs, Fe—25es (gray lines).
The Fermi level is at zero energy. Additional horizontal
lines correspond to Fermi level position for the case of
20% and 60% hole doping.

BaFe2Se?2

Fig. 6. Fermi surface of BaFezAs2 shown in the first
Brillouin zone centered at I' point.




Comparison of LDA and LDA' results

for stoichiometric KFe2Se2
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Because of more repulsive potential in LDA' splitting between O-2p
and Me-3d increases, however band shape stays almost the same. Since
Me-3d states are pinned to the Fermi level O-2p states go down.




Comparison of LDA+DMFT and LDA'+DMFT results
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LDA'+DMFT self-energy effects
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TABLE I: Quasiparticle energy scale renormalization factors and corresponding energy shifts (in eV, in round brackets) for
different bare Fe-3d LDA’ orbitals for all hole doping levels n. in the LDA’ scale energy interval from -1.0 eV to 0.4 eV.

Orbital chracter n.—26.52 n.—27.20 n.—28.00 n.—29.00
Ty 1.5 (-0.23) 3.9 (-0.73) 2.65 (-0.61) 1.7 (-0.35)

xz,yz (1) 4.2 (-0.78) 3.0 (-0.75) 2.6 (-0.69) 1.7 (-0.38)
rz,yz (2) 2.3 (-0.48) 2.5 (-0.60) 2.6 (-0.69) 1.7 (-0.38)
TY, TZ, Y2 1.2 (-0.10) 1.3 (-0.10) 1.3 (-0.10) 1.4 (-0.17)
322 — r? 4.7 (-0.85) 2.0 (-0.30) 1.3 (-0.03) 1.25 (0.0)




E-Ey (eV)

Comparison of LDA+DMFT and LDA'+DMFT results
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Fig. 4. Comparison of LDA+DMFT (grey lines),

LDA‘+DMFT (black lines) Se-4p (thin lines) and Fe-3d
states (thick lines) densities of states for K 76Fe1 72Ses.
The Fermi level Ef is at zero energy.



Conclusions:

* Proposed consistent LDA'+DMFT method to treat the
LDA+DMFT double counting problem.

* LDA+DMFT and LDA'+DMFT calculations are done for charge
transfer insulators NiO, MnO, CoO and metallic systems SrVO3 and
Sr2Ru0O4. LDA'+DMFT results give better O-2p states position in
comparison with X-ray data. For NiO and CoO LDA'+DMFT
improves LDA+DMFT where metallic solutions are obtained.

* Correlation effects in KFe2Se2 grows with hole doping in
according to LDA'+DMFT results.

* As can be seen from LDA'+DMFT results Fe-3d bands of different
symmetry have different renormalization also dependent on the part
of the Brillouin zone.

* LDA'+DMFT spectral functions describes recent ARPES
experiments on hole doped iron chalcogenide superconductor
KFeSe in the normal state on a semiquantitative level.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

