

Alexander Vasiliev

September 30, 2013

All studies are provided in collaboration with

Leibniz Institute for Solid State and Materials Research Dresden

ILTPE - B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

Synthesis

Family	Compositions	Images
11	FeSe	
	Fe(Se,Te) (1) Fe(Te,S) (2)	
	Fe(Se,Te,S)	
111	LiFeAs	(b)
	NaFeAs	Acc V Sport Hayn Det WO Exp I and ISOKV 52 182 SE 88 0 SE 1852

D. Chareev, et al., CrystEngComm, 15, 1989 (2013). I. Morozov, et al., Cryst. Growth and Design, 10, 4428 (2010)

Primary characterization

Coexistence of magnetism and superconductivity in $Fe_{1+\delta}Te_{1-x}Se_{x}$

Y.A. Ovchenkov et al., Physica C 489, 32 (2013).

Andreev spectroscopy

Two sets of subharmonic gap structures in LaFeAsO_{0.9}F_{0.1} were detected indicating the existence of two distinct superconducting gaps: Δ_L =5.51 meV and Δ_S =10.2 meV.

Ya. G. Ponomarev, et al., Phys. Rev. B 79, 224517 (2009). Ya.G. Ponomarev, et al. JETP, 113, 461 (2011). Ya.G. Ponomarev, et al. JSNM, 26, 2867 (2013).

Mössbauer studies

Magnetic phase transition in LiFeAs is first order in nature A sharp evolution of the $V_{zz}(T)$ and $\eta(T)$ parameters near $T \approx T_N$, T_s is interpreted as a manifestation of the anisotropic electron redistribution between the dxz, dyz and dxy orbitals of the iron ions.

I. Presniakov, et al. J. Phys.: Condens. Matter 25, 346003 (2013).

Specific heat studies

Low-temperature specific-heat C(T) data identify both an isotropic *s*-wave and extended *s*-wave order parameters coexisting in a superconducting single-crystal FeSe with Tc = 8.11 K.

J.-Y. Lin, et al., Phys. Rev. B, 84, 220507(R) (2011)

Femtosecond spectroscopy

Relaxation time analysis in FeSe exhibits anomalous changes at structural phase transition at 90 K and previously overlooked phase transition or crossover at 230 K.

C.W. Luo, et al., Phys. Rev. Lett. 108, 257006 (2012) C.W. Luo, New Journal of Physics 14, 103053 (2012)

SANS & ARPES studies IFW

LiFeAs SANS rocking curves indicate single isotropic SC gap Δ_0 =3.0±0.2 meV, which agrees with the ARPES value of Δ_0^{ARPES} =3.1±0.3 meV and corresponds to the ratio $2\Delta/k_BT_c$ =4.1±0.3, approaching the weak-coupling limit predicted by the BCS theory.

D.S. Inosov, et al., Phys. Rev. Lett. 104, 187001 (2010).S.V. Borisenko, et al., Phys. Rev. Lett. 105, 067002 (2010).

High pressure studies FTINT

Ab initio calculations indicate that FeSe is close to magnetic instability, with dominating enhanced spin paramagnetism. The calculated paramagnetic susceptibility exhibits a strong dependence on the unit cell volume and especially on the height Z of chalcogen species from the Fe plane.

G.E. Grechnev, et al., J. Phys.: Condens. Matter, 25, 046004 (2013) G.E. Grechnev, et al., J. Magn. Magn. Mater., 324, 3460 (2012)

Magnetism & Superconductivity in $Fe_{1.05}(Te_{1-x}S_x)$

Thanks for attention!Danke schön!Щиро дякую!Спасибо за внимание!